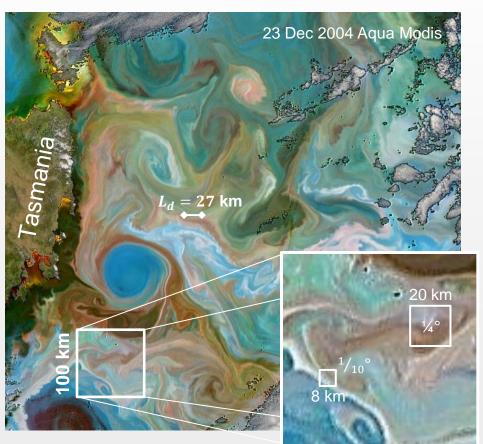
The Future of Modeling Oceans and Ice

Presented by Alistair Adcroft

(Stephen Griffies, Robert Hallberg, Matthew Harrison, Sonya Legg, Angelique Melet & Olga Sergienko)


Frontiers in Climate and Earth System Modeling: Advancing the Science

Geophysical Fluid Dynamics Laboratory

Frontiers in ocean/ice-sheet model development

 Role of ocean eddies in climate/earth system Sea-level rise and icesheet/ocean interaction

MOM6

- MOM6 unifies the efforts of MOM4/5 and GOLD
 - Initial focus is on construction of p*coordinate (z-like) ¼° component for CM4
- Arbitrary Lagrangian Eulerian method in the vertical
 - Used for general- & hybrid coordinates
 - Unconditionally stable/accurate
 - Representation of topography
 - Wetting/drying
- Global ice-sheet/ocean coupling
 - Requires ALE for wetting/drying

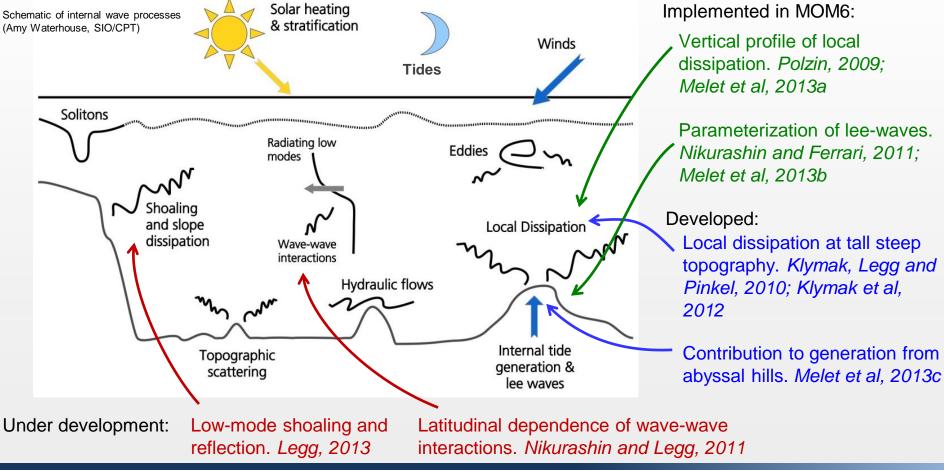
- Energetically consistent closures
 - Patchy convection

Ilicak et al, 2013

- Internal wave driven mixing (CPT)
- Community software (CVmix)
- Eddies in eddy-permitting models
- Second order mesoscale closure
- Boundary layer physics
 - Mixed layers
 - Overflows
- Numerics and formulation
 - Transport schemes
 - Solvers
 - Dynamically integrated sea-ice
 - Reduced cost of bio-tracers

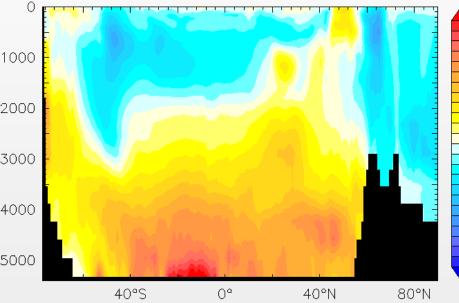
Representation of bathymetry

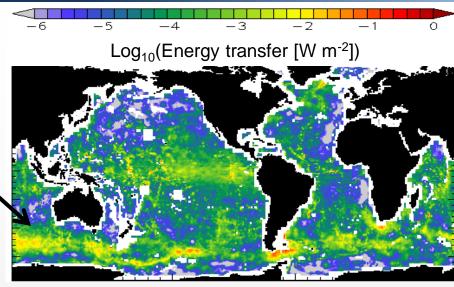
e.g. Indonesian Throughflow Ocean bathymetry plays leading role in shaping ocean circulation an depth on 18 grid Modelers always adjust topography ² because not all features are resolved by a single column value Using finite volume methods permits "correct" geometry at Fine resolution topography finite resolution Open areas for lateral transport Bottom of model grid columns Adcroft, 2013


Representation of bathymetry

e.g. Indonesian Throughflow Ocean bathymetry plays leading role in shaping ocean circulation Modelers always adjust topography ² because not all features are resolved by a single column value Using finite volume methods permits "correct" geometry at Maximum depth: edges: finite resolution | Maximum Mean Minimum Adcroft. 2013

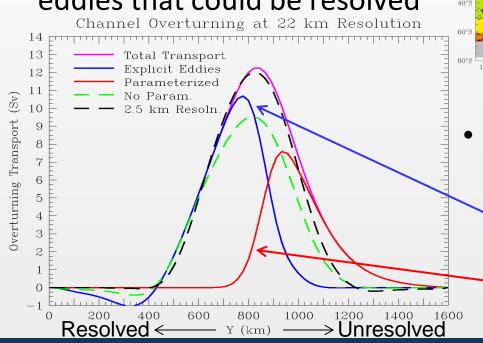
Physically-based, energetically-consistent parameterizations of diapycnal mixing


As part of NOAA/NSF Internal Wave-Driven Mixing Climate Process Team, we are developing and implementing parameterizations of sub-grid-scale mixing which allow mixing to vary spatially and evolve in a changing climate.

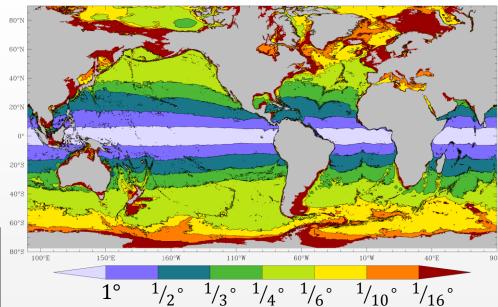

CPT: Impact of Lee-wave driven mixing

 Lee-wave energy is most significant in Southern Ocean

Zonal average temperature change induced in CM2G by extra source of energy for mixing


- Addition of lee-wave driven mixing parameterization systematically warms deep ocean & cools upper ocean
 - Adding missing physics improves model credibility

Melet, Hallberg, Nikurashin and Legg, 2013



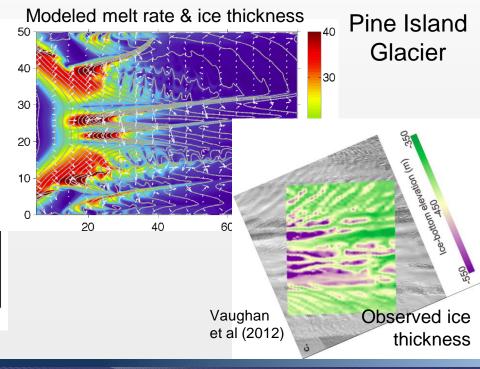
Parameterizing eddies in an eddy-permitting regime

- Even "fine-resolution" ocean models cannot resolve firstmode eddies everywhere
- Adding a global eddy parameterization dampens the eddies that could be resolved

Mercator resolution that resolves deformation radius

- Resolution-aware eddy parameterization
 - Allows baroclinic instability to proceed when resolution is sufficient
 - Parameterizes eddy fluxes otherwise
 Hallberg, 2013

Ice-sheet/ocean coupling


- Ice-sheet dynamics are biggest uncertainty in sea-level rise
- Dynamics of grounding line is affected by interactions with oceans
- Largest mass loss is observed where warm ocean reaches ice

Mass loss occurs where ocean is warm

Observed mass balance

Goldberg et al. 2012a,b; Sergienko et al, 2013

- Confined ice shelves <u>dynamically</u> interacting with warm water spontaneously form melt channels
- MOM6 permits moving grounding lines

Directions

- Building towards more flexible ocean model
 - Single unified GFDL ocean model (MOM6)
 - Focus on improving physical content (in contrast to other groups working on alternative horizontal grids)
- Increasingly realistic capabilities
 - Narrow channels, overflows, grounding of icebergs & sea-ice, ...
 - Coupled comprehensive ice-sheet model
- Physically consistent formulations
 - Energetically consistent parameterizations
 - More diverse range of phenomena (e.g. tides, eddies, overflows, estuaries)
- MOM6 will follow the long tradition of community ocean modeling

